Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration.

نویسندگان

  • Jayalakshmi Govindan
  • M Kathryn Iovine
چکیده

Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transitional matrix analogous to the one formed during newt skeletal and heart muscle regeneration is synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. Laminin, the protein characteristic of differentiated tissues, showed only modest change in the expression pattern. Our findings on zebrafish fin regeneration implicates that changes in the extracellular milieu represent an evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with distinct players depending on the type of tissue that is involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle

Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...

متن کامل

Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.

Adult zebra fish completely regenerate their caudal (tail) fin following partial amputation. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits this regenerative process. Proper regulation of transcription, innervation, vascularization, and extracellular matrix (ECM) composition is essential for complete fin regeneration. Previous microarray studies suggest that genes involved in E...

متن کامل

اهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری

Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...

متن کامل

The art of fin regeneration in zebrafish

The zebrafish fin provides a valuable model to study the epimorphic type of regeneration, whereby the amputated part of the appendage is nearly perfectly replaced. To accomplish fin regeneration, two reciprocally interacting domains need to be established at the injury site, namely a wound epithelium and a blastema. The wound epithelium provides a supporting niche for the blastema, which contai...

متن کامل

Use of the TetON System to Study Molecular Mechanisms of Zebrafish Regeneration.

The zebrafish has become a very important model organism for studying vertebrate development, physiology, disease, and tissue regeneration. A thorough understanding of the molecular and cellular mechanisms involved requires experimental tools that allow for inducible, tissue-specific manipulation of gene expression or signaling pathways. Therefore, we and others have recently adapted the TetON ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Gene expression patterns : GEP

دوره 19 1-2  شماره 

صفحات  -

تاریخ انتشار 2015